

MIL 90000 - Automatic Recirculation Control Valves

Introduction

Operation of Centrifugal pumps below their minimum flow requirements is the primary cause of premature pump failure. Recirculation systems are employed for protection of Boiler feed pumps

When the Boiler Feed water (BFW) is circulated through the Boiler Feed Pump (BFP), the heat generated during the process is transferred to the BFW and to the BFP. When the BFP operates close to the rated design values of Discharge Pressure and Flow Rate, the increase in fluid temperature is not significant. As the pump requires a minimum liquid flow through it to avoid overheating, when the downstream demand of BFW flow reduces, there is an increase in temperature. This temperature increase can be drastic when the demand drops typically below 50%. Vapour pockets can form which can lead to severe cavitation

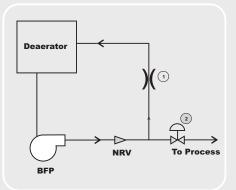
Automatic Recirculation Valve

An automatic recirculation valve (ARC) is a multifunctional valve whose primary function is to ensure a pre-determined minimum flow through the centrifugal pump at all times. An ARC valve has one inlet and two outlet ports. The main discharge port connects to the process and bypass port connects back to the deaerator. When the flow is high, the main discharge port of the ARC is kept fully open and bypass port closes. When the flow reduces, the main port starts closing under gravitational pull or spring assistance. Simultaneously, the bypass port starts opening. At transient flow rates, the main port and bypass port are

damage to the pump internals. To ensure that this damage does not happen, Centrifugal Pumps always have a design value of Minimum Flow, which should be necessarily circulated through the pump as a minimum to avoid increase in fluid temperature to the cavitation regime. The minimum flow is decided based on the pump design and plant safety considerations and normally varies between 20% to 50% of the design flow. For pump and plant safety, this set value of minimum flow has to be circulated through the pump regardless of the downstream demand.

For ensuring this, a recirculation system is

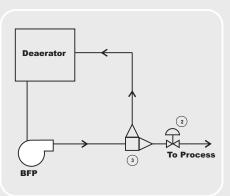
both partially open. When the flow falls below the set minimum flow limit, the main port closes fully and at this condition, the bypass port will be fully open. The bypass port is sized for minimum flow and thus the minimum flow required of BFP is met. ARC being a combination of NRV and RC Control Valve, does not require any external control system.


employed along with Centrifugal Pumps, bypassing the discharge line back to the deaerator. The recirculation system design will be based on the design criteria / operating philosophy of the plant.

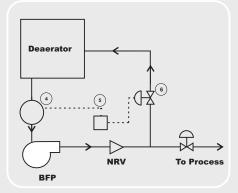
Typical systems / devices to ensure minimum flow through a Boiler Feed Pump

- **Continuous Recirculation System**
- Automatic Recirculation System
- **On-Off Recirculation System**
- Modulating Recirculation System

Continuous Recirculation system



1- Fixed Pressure Reduction Device 2 - Feedwater Regulating Control Valve


Recirculation system with ARC

3 - Automatic Recirculation Valve

4 - Flow/Temp/Pressure Measurement

Recirculation system with Control Valves

5 - For ON-OFF: Flow/Temp/Pressure Switch of On/Off Controller For Modulating: Flow/Temp/Pressure Modulating Controller 6 - BFP Min.RC Valve

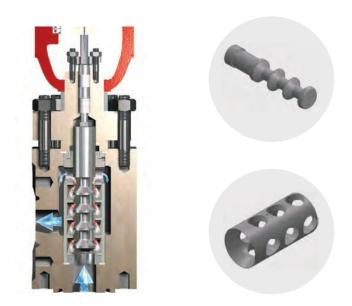
Technical Information

Model Decodification

1 st 2 nd	3 rd	4 th	5 th		Su	ffix	
9 0	-	-	-	-	-	-	-
Series	Model	Size	Pressure Class	Connection	Configuration	Bypass option	Body Material
90 . Automatic Recirculation Control Valve	 Single stage Double stage Multi stage 	1. 1" 2. 1½" 3. 2" 4. 2½" 5. 3" 6. 4" 7. 5" 8. 6" 9. 8" A. 10" B. 12"	 1. 150 2. 300 3. 600 4. 900 5. 1500 6. 2500 A. PN 10 B. PN 16 C. PN 25 D. PN 63 E. PN 100 F. PN 160 G. PN 250 H. PN 320 	F. Flanged W. Weld End	V. Vertical Mounting H. Horizontal Mounting	S. Standard O. Oversized	C. Carbon Steel S. Stainless Steel A. Alloy Steel D. Duplex Steel

Design Features

Regulatory duty


The valve performs not only On/Off function, but modulating function also. It can also work in various load conditions without loss of energy

Stable operation

Sturdy spring loaded check valve design eliminates instability during operation. Hardfaced seat surface (check valve side) ensures long service life

Rugged bypass design

The bypass port employs the globally field proven MIL 78000 series technology which is based on based on the principle of multi-step high resistance axial-flow. Pressure reduction occurs along the length of the plug through a series of throttling stages, designed to divide the total drop equally between the trim elements or steps. No individual stage is ever exposed to the full pressure differential and as a result, trim life is greatly extended. In addition, the fluid takes a tortuous path. This adds resistance and therefore velocity head loss. The valve trim is designed to reduce pressure recovery to lessen chances of vaporization at the orifice and consequently, eliminates cavitation. Because of their

relatively large flow passages and shearing action provided by the multiple stage plug & cage designs, these valves are particularly well suited for applications involving fluids with entrained particles. This is of more relevance in older power plants when pipe scales can pass through the feed water.

02

General Data

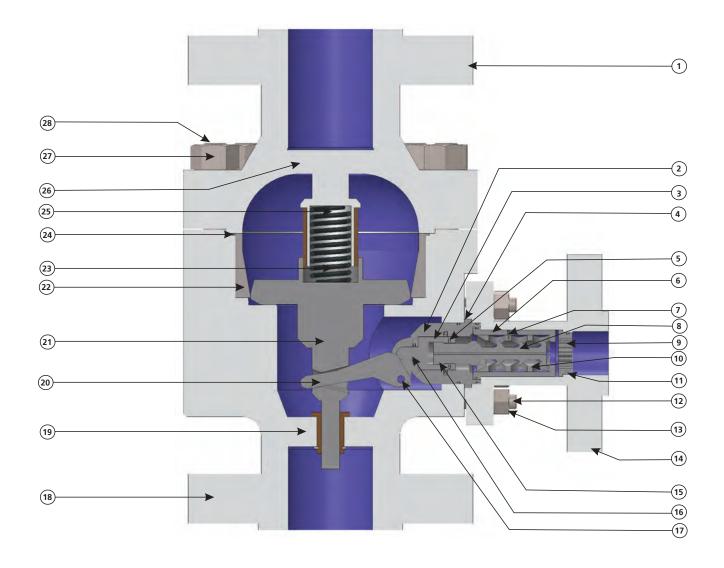
	Flow To Open (Check Valve) Flow To Close (Bypass Valve)	Operating Temperature range	Up to 260 ℃
Leakage Class	Main Check Valve: FCl 70.2 Class IV (all models) Bypass: FCl 70.2 Class IV (for 903 model)	O-Ring Materials • EPDM • FEPM • Viton • Kalrez / Chemrez	≤ 120 °C ≤ 150 °C ≤ 190 °C < 260 °C

Installation requirements

Standard Orientation - Vertical

• Filter mesh having mesh size 0.3 to 0.5mm should be used at pump suction side

Sizing and Selection


Size code	1	2	3	4	5	6	7	8	9
Valve size (inch)	1	1 1⁄2	2	2 1/2	3	4	5	6	8
Main Flow(m³/hr)	6 - 20	9 - 47	14 - 80	20 -115	33 - 178	52 - 282	77 - 425	108 - 555	138-791
Bypass Size (inch)	1	1	1	1 ½	1 1⁄2	2	2	2 1/2	3
Max Bypass flow(m³/hr)	16	16	16	42	42	62	62	125	175

Valve size / Rating / Approx. Weight

KSB MIL Model	Main Size (inch)	Rating	Bypass Size (inch)	Approx. Weight (kg)	KSB MIL Model	Main Size (inch)	Rating	Bypass Size (inch)	Approx. Weight (kg)
90322	1.5	300	1	36	90362	4	300	2	107
90323	1.5	600	1	36	90363	4	600	2	153
90324	1.5	900	1	36	90364	4	900	2	155
90325	1.5	1500	1	49	90365	4	1500	2	205
90332	2	300	1	50	90372	5	300	2	185
90333	2	600	1	57	90373	5	600	2	225
90334	2	900	1	59	90374	5	900	2	227
90335	2	1500	1	59	90375	5	1500	2	348
90342	2.5	300	1 1⁄2	60	90382	6	300	2 1/2	257
90343	2.5	600	1 1⁄2	87	90383	6	600	2 1/2	273
90344	2.5	900	1 1/2	88	90384	6	900	2 1/2	280
90345	2.5	1500	1 1⁄2	91	90385	6	1500	2 1/2	485
90352	3	300	1 1⁄2	71	90392	8	300	3	470
90353	3	600	1 1⁄2	87	90393	8	600	3	555
90354	3	900	1 1/2	88	90394	8	900	3	558
90355	3	1500	1 1⁄2	127	90395	8	1500	3	928

04

Construction

Material of Construction

Drawing ref. No.	Part name	Standard material	Drawing ref. No.	Part name	Standard material
1	Top Flange	A 105	14	Bypass Body	A 105
2	Bypass housing	AISI 420	15	Bypass Plug cap	AISI 420
3	Guide bush	AISI 420	16	Contact button	AISI 420
4	Pin	SS316	17	Pivot Pin	AISI 420
5	Rod Seal	PTFE + Carbon / Graphite	18	Main Body	A 105
6	Spacer tube / seat	AISI 420	19, 26	Plug Guide	SS 316
7	Roll Pin	AISI 420	20	Bypass Connector	17-4 PH (H900)
8	Bypass Plug	AISI 420	21	Main Plug	SS 316L
9	Flow Straightner	AISI 420	22	Seat Liner	SS 304
10	Liner	AISI 420	23	Spring	SS 304
11, 24	O-Ring	EPDM	25	Spring Guide	AISI 420
12	Bypass Body Stud	ASTM A193 Gr B7	27	Main Body Nut	ASTM A194 Gr 2H
13	Bypass Body Nut	ASTM A194 Gr 2H	28	Main Body Stud	ASTM A193 Gr B7

Technology that makes its mark

Your local KSB representative:

KSB MIL Controls Limited Meladoor, Annamanada, Pin - 680741 Thrissur District, Kerala, India Tel. +91 480 2695700 · Fax. +91 480 2890952 E-mail: sales.mil@ksb.com · www.ksb-mil.com

You can also visit us at: www.ksb.com/socialmedia

🏐 MIL